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Boundary condition of the third kind (also known as Robbins condi-
tion} has been used to devise an extremely simple method of satisfying
the no-slip boundary condition to second-order accuracy for solving
problems o} incompressible viscous flows using the vorticity-stream
function form of the complete unsteady Navier-Stokes equations. It has
been applied to the much-tested problem of flow past circular cylin-
ders. Excellent agreement has been obtained with previous theoretical
and experimental results despite the use of simple finite-difference
techniques. The results obtained using the proposed approach have
been compared with those obtained by straighttorward use of the
Dirichlet condition and it is easy to see that for unsteady problems the
proposed technique is much superior to the conventional one. Finally,
a study has been cartied out to check the dependence of the present
scheme on spatial discretization and the position of the outer boundary.
It has been concluded that despite the “local” nature of the improve-
ment, the proposed technique is encouragingly fast, stable, and
accurate because it allows satisfaction of no-slip to a higher order of
accuracy.  © 1994 Academic Press, Inc.

INTRODUCTION

One of the more popular approaches used for analysing
two-dimensional incompressible viscous flow problems is to
solve the corresponding vorticity-stream function formula-
tion of the complete Navier-Stokes (N-8) equations. Apart
from its inherent simplicity, the approach is rather attrac-
tive as regards computer economy. However, despite its
attractive advantages, the method has long been plagued
with serious problems such as the satisfaction of proper
boundary conditions. Attempts to determine realistic,
accurate, and stabte methods have been found to be highly
frustrating. It has also found that the adequacy of any
boundary condition, as determined by computational
cxperiments, can depend upon the Reynolds number, the

interior point differencing methods, the outer boundary
conditions, and sometimes on initial conditions [ 1],

In the vorticity-stream function appraoch, two boundary
conditions, namely, the stream function (i) and vorticity
(w) need to be specified at any boundary. Among all the
boundary conditions, those at the no-slip wall are of
extreme importance because it is at the no-slip wall where
vorticity is produced, the subsequent convection and diffu-
sion of which drives the flow-field. 1t is, however, found that
whereas the stream-function field is supplied with two
natural boundary conditions, none exists for the vorticity
fieid. Generally, the value of the stream function at a no-slip
boundary is taken to be zero and is used as a Dirichlet
boundary condition for solving the stream-function Poisson
equation. The value of the boundary vorticity is obtained by
satisfying the no-slip at the body boundary to a certain
degree of accuracy and by using it as a boundary condition
for solution of the vorticity transport equation. Thus, the
no-slip is satisfied implicitly through of the evaluation
vorticity at the wall which is used for solving the vorticity
transport equation.

It is, however, confusing to note that straightforward
appiication of the above approach leads to a streamfunction
field where the no-slip condition does not seem to be
satisfied to an acceptable order of accuracy. For example, if
second-order accurate forward-difference approximations
of the no-slip condition are evaluated at the body boundary,
they lead to surprisingly different values from what follows
from the condition of the no-slip [1]. Although it is true
that a second-order approximation to the no-slip condition
should be different from the ideal no-slip if the third-order
derivatives themselves are large, such a consolation does
not seem to satisfy many of the investigators [2—4]. In their
work, they have tried to satisfy the no-slip condition to the
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second-order accuracy as well as possible. The experience of
the present authors also seem to suggest that it is indeed
worthwhile to make such an attempt, especially, when
unsteady solutions are important.

Most of the previous authors had adopted some kind of
iterative scheme [2] in order to attain their goal. Such itera-
tions implied a substantial increase in the computer expen-
ses, Moreover, as has been observed in [4], these iterative
schemes did not work well enough for solving unsteady
problems. Thus, in the present work, a new approach has
been proposed to satisfy the no-slip boundary condition to
second-order accuracy. A numerical equivalent of the
boundary condition of the third kind, which is aiso known
as Robbins condition, has been derived by satisfying the
no-slip condition to second-order accuracy. This condition
has been used as the body boundary condition for solving
the stream-function Poisson equation. In order to remain
consistent, a new second-order accurate expression for
evaluating the no-slip boundary vorticity has aiso been
developed and used for solving the vorticity transport
equation.

In the present work, the developed approach has been
applied to solve the much-tested problem of the flow past
non-rotating circular cylinders for a fairly wide range of
Reynolds number (5<Re < 10,000). Besides comparing
steady state values of coefficients of total drag and its com-
ponents, the temporal evolution of the same and the no-slip
wall vorticity has been compared with some of the available
theoretical and experimental results. The agreement
obtained is a fair proof of the rehiability and accuracy of the
simple approach developed.

The same method has been compared with the more
conventional approach of applying the Dirichlet condition
on the body boundary. It has been found that the present
method is not only more accurate but also more stable than
the conventional first-order accurate method which is
clearly contrary to the popular belief that the use of a
higher-order accurate expression for evaluating no-slip wall
vorticity leads to numerical instabilities,

Finally, a short study has been presented to indicate the
dependence of the present technique on the space discretiza-
tion and the position of the outer boundary.

GOVERNING EQUATIONS

It is assumed that an infinitely long circular cylinder of
radius “a,” suddenly appears in an existing uniform flow of
incompressible viscous fluid flowing at a speed U,. A
coordinate system is chosen which is fixed with the circular
cylinder (Fig. 1). The unsteady N-S equations in polar
coordinates written in the vorlicity-stream function
formulation are

(2)
where
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(1) and (2) can be written in the dimensionless forms,
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The boundary conditions for the above problems are:

(3)

(i) no-penetration and no-slip on the cylinder surface,
and

(i)

zero perturbation at infinity.
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FIG. 1. The flow field axes and discretization.
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BOUNDARY CONDITIONS

In order to remain contextual, we shall stick to cylindrical
polar coordinates and flows past circular cylinders only.
However, the derivations that follow should be extendable
to any other coordinate system without much difficulty.

Let us assume that the entire flow field has been dis-
cretized in the manner shown in Fig. L. For the present
work, let us also assume that the far field boundary
conditions are known to be free-stream conditions and
coneentrate on the no-slip boundary conditions only. It is
known that these conditions are given by

=4, and  &Yol=Q, (5)

for &=¢,0a, and +20. The first condition in (5) implies
no-penetration and the second cne implies no-slip.

Stream Function Boundary Condition

As remarked before, the value of the stream function at a
no-slip boundary is generally taken to be zero and is used as
a Dirichlet boundary condition for solving the Poisson
equation. This approach has its drawbacks, the principal
one being insufficient satisiaction of no-slip. The methods
that have been devised to circumvent this problem are com-
putationally rather expensive and not reliable for unsteady
calculation [[1]. Thus, in the present work the main aim has
been to devise a method such that (i) the second-order
approximation to the no-slip remains properly satisfied
throughout the calculation, (ii} is computationally inexpen-
sive, and (iii) is reliable and accurate enough to perform
unsteady calculations.

The natural candidate for satisfying condition (i) is the
Neumann boundary condition which is well known for
its slow rate of convergence, and thus contradicts (ii).
Moreover, satisfaction of the Neumann condition guaran-
tees a solution unique only up to an additive constant.
Regarding the third condition it is not possible to say
anything beforehand but an educated guess suggests that
if (1) is properly satisfied then (iii) will follow automaticaliy.

Keeping the above in mind, the boundary condition that
has been proposed in this work is, in fact, a combination of
both the Dirichlet and Neumann boundary conditions, i.e.,
a Robbins boundary condition. The condition has been
derived as follows.

The second-order accurate forward-difference approxi-
mation of (6y/d&), ; can be written as

(%) =—3¢’n‘j+4'j’|.j‘"'}’2,j
3 /., 2(4¢) .

Using the boundary condition given by (5}, the above can
be reduced to

_ — 3+ — ‘ffz,j.

Q,

2(4¢)
Thus, we obtain
24 4 1
'1’(’5+”(Té)‘91>=§4’1,_;‘—§¢2,j- (6)

It is easy to see that the above constitutes a boundary
condition of the third kind and that it guarantees a unique
solution because the coefficient of £2, is nonzero and greater
than zero [5]. Rearranging the above we obtain
Yo =303, + i+ 248 2,) (7
and this is the form in which (6) has been used in the
proposed scheme for solving the Poisson eguation.

One interesting point to note here is that the boundary
condition (7) is also suitable for solving problems of flow
past moving bodies. It has recently been applied to the
interesting case of flow past rotating circular cylinders and
seems to be yielding good results.

Another important point that should be noted is that the
use of (7) implies that the governing equation (4) cannot be
explicitly satisfied at the points adjacent to the no-slip
boundary. This certainly is a drawback of the proposed
scheme despite the observation by several previous
investigators [6] that a local error does not necessarily
deteriorate the overall result. However, it has been observed
that the residues at the abovesaid points become smaller as
the grid is made finer and as the calculation proceeds. Thus,
as will be clear in the latter part of this work, the results
obtained using the proposed scheme are more accurate and
reliable than the more conventional scheme, where (4) is
satisfied explicitly but no-slip is not.

Expression for Evaluating No-Slip Boundary Vorticity

As has been observed before, at the no-slip boundary, the
vorticity does not have any natural boundary condition. In
general, the value of vorticity at the body boundary is
evaluated from (4) using the no-slip condition at the body.
This seems to be a fairly logical approach because, after all,
it is the no-slip at the body which gives rise to the vorticity
in the flow field. Thus,

0. =i [(%)o,f+ (%)‘U].

The first term in the bracket on the right-hand side can in

(8)
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most cases, be taken to be zero and we shall assume it to be
zero for our case.

Using finite-difference approximations, the right-hand
side of (8) can be written to various orders of accuracy. For
example, if we accept an accuracy of first-order, an expres-
sion (which has been previously extensively used by other
investigators for solving problems of flow past stationary
walls and found to be very stable and capable of producing
second-order accurate results ) for evaluating vorticity at the
no-slip boundary is

_i|:2l,l'11‘12(dé)gb_2wb:|‘

P g @zy ®)

Other expressions for evaluating the no-slip wall vorticity
can be obtained using other finite-difference approxima-
tions (see [67] for a fairly comprehensive review). In the
present scheme, in order to remain consistent with the
second-order accurate equation (7) used for solving
the Poisson equation, we have developed and used the
following expression which can be obtained by using the
second-order forward-difference approximation to the term
3y /0&? in (8) directly. Thus,

_1 —30Q, + 48/, ,— (8y/dE), ;
24 24¢) '

Wy, ;

The above, using second-order accurate central-difference
expressions, can be written as

,=L —difry iy A, s —6(A8) €24
L J P 4(‘45)2 .

(10)

U

NUMERICAL IMPLEMENTATION

An extremely simple framework has been used for the
numetical implementation of the above. An alternate direc-
tion implicit (ADI) conservative finite-difference scheme
has been used for solving the vorticity transport equation as
foilows:
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where “4¢” is the time-increment used, subscript “n” denotes
the snth time step, and “» + 1/2” denotes the values of the
intermediate time step between “n” and “n 4 17 th time steps.
The space derivatives in the above two equations have been
represented by second-order accurate central-difference
approximations.

A simple successive overrelaxation (SOR) has been used
for solving the Poisson equation. The coupling between the
two equations has been kept explicit. Besides the proposed
boundary conditions (Eq. (7) for the stream function and
(10) for the vorticity) the results have been obtained for
comparison using the conventional boundary conditions
(first equation of (5) for the stream function and (9) for the
vorticity).

RESULTS AND DISCUSSIONS

The results presented below have been broadly divided
into three parts. In part A, the proposed scheme has been
validated by comparing it with available theoretical (both
analytical and numerical in nature) and experimental
results. In part B, the proposed approach has been
compared with the conventional one. In part C, a study has
been carried out to obtain an idea of the dependence of the
present scheme on spatial resolution and the position of the
outer boundary. In each part, studies have been carried out
for both steady and unsteady states of the flows.

A. Validation

The proposed approach has been validated for both
steady state solutions and the extremely ¢nitical starting
phase of the flow. To start with, we consider the steady state
solutions.

In Table I, the steady state drag coefficients, both the
total and the components, for various Reynolds numbers as
obtained using the present approach, have been presented
along with other results available [rom the current literature
[9-11]. The comparison clearly indicates that, as far as
steady state solutions are concerned, the proposed method
produces accurate and reliable results. It should be
indicated here that while using the proposed scheme it was
assumed that 4& =0.02, 44 =2/60, and r_, = 152.4060.
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TABLEI
Comparison with Results Obtained from Ref. [9-11]

Re Ref. [9] Ref. [10] Ref. [11] Present
Pressure component of drag
5 2.104 2.199 2.1540
20 1.201 1.2131
Friction component of drag
5 1.843 1.917 1.8912
20 0,794 0.7958
Total coefficient of drag
5 3947 4.116 40452
20 2.0M 1,995 2.045 2.0189

For evaluating the present scheme for the extremely criti-
cal phase of starting flow, a fairly large range of Reynolds
number (500 to 10,000) have been studied. The evolution of
the coefficients of drag (total, as well as components),
no-slip wall vorticity with time, and obtained stream-line
patterns have been compared with results obtained by the
various theoretical and experimental works.

Among the theoretical works, [12, 13] are analytical
in nature. They are known to be valid for small times
and moderately large Reynolds numbers., The works
[7,8, 14, 15] are numerical in nature. They are expected to
be valid for a longer time and in some cases results up to
t = 6.0 have been presented.

In Figs. 2a and b, the evolution of the drag coefficients
with time has been compared with the results due to
F12, 14] for Reynolds numbers 1000 and 10,000. The grid
(radial * angular) used for Re = 1000 is 1000 = 60 and for
Re = 10,000 it is 1500 % 60. The outer radius in both the
cases is five. In both the cases the calculations were started
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with a small time increment of 0.0001 in order to obtain
accurate results in the extremely critical phase of the
starting flow. It should be noted that if the resulis in the
starting phase were not important, we could have used
much larger time increments as discussed in the following
part of Results and Discussions. From the figures it can be
seen casily that the present results agree reascnably well
with the analytical ones. The agreement deteriorates with
time as expected because the analytical results are known to
become inaccurate as time increases. An encouraging
evidence of the accuracy of the present approach is the fact
that the calculated drag coefficient remains positive
throughout and compares well with [12]. In comparison
with the results represented in [ 14, 15], the drag coefficient
goes to negative values for Re=10,000. In addition to
producing negative values of drag, the results presented in
[14] are found to oscillate unlike in any other work. The
oscillations obtained in the results of [ 14] are probably due
to the use of extremely large time steps.

En Fig. 3, the time evolution of the pressure component,
the friction component, and the total drag have been
compared with results presented in [12] for Re = 500. The
grid used is 350 % 60 for an outer radius of 20. The time
increment in this case is 0.0005. It should be noted that, in
comparison with the previous cases, the grid in the present
case is extremely coarse. Despite the coarse grid, it can be
seen that at small times, not only the total drag, but also its
components, are in fair agreement with the analytical
results. This fact testifies strongly to the reliability of the
appreach developed. At larger times the analytical results
are known to be inaccurate and the comparison becomes
poor. However, it is interesting to note that only the
pressure component of the drag disagrees with the analyti-
cal results, whereas the friction component is in excellent
agreement throughout.

In Fig. 4, boundary vorticity results obtained at various
time steps have been compared with those in [12, 15] for
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F1G. 2. Comparison of the evolution of C, with time for various Reynolds numbers. {a} Ref. [12], Re =1000, O; Ref. [14], Re= 1000, ——;

present results,

; (b} Ref, [127, Re = 10,000, O; Ref. [14], Re = 10,000, ——; present results,
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FI1G. 3. Comparison of the evolution of the total drag coefficient and
its compoenents with time at Reynolds number 500. Results from Ref. [12]:
@, total drag; O, friction component; &, pressure component; present
results,

Reynolds number 1000 for times 0.2 and 1.0. At the earlier
time they compare fairly well with each other. However, at
time r=1.0, the results presented in [12] are once more
found to be somewhat different, the reason being quite
obvious. It is interesting to note that the numerical results
remain in close agreement throughout the time span. In
Fig.5, a similar comparison has been presented for
Re = 10,000 with results obtained from [127. The agree-
ment is found to be good up to ¢t =0.6.

In Fig. 6 and 7, examples of evolution of the streamline
pattern with time have been presented. The Reynolds
numbers considered are 550 and 9500. It should be noted
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FIG. 4. Boundary vorticity distribution at Re=1000. Results from
Ref. [12], A; from Ref. [15], @®; present results,
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FIG. 5. Boundary vorticity distribution at Re = 10,000, Results from
Ref [12] O, A, @; present results,

that the results have been obtained by making the assump-
tion of symmetry which is known to be valid shortly after
the impulsive start. Qualitatively speaking, they are almost
identical to the theoretical and experimental results
presented in [ 16, 8. It has been rather pleasing to note that
even the appearance and evolution of a bulge, secondary
separation, - and f-phenomena were fairly well predicted.
It was found that obtaining this qualitative similarity was
much easier (especially, as regards space discretization)
than to obtain the quantitative accuracy illustrated in
Figs. 2 to 5.

Thus, on the basis of the above results and comparisons,
it may be said that the present approach is a reasonably
accurate one which produces results comparable even to

FIG. 6. A close-up view of the secondary vortex and the a-phenomenon
at Re =550, r=1.83.
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FIG. 7. Siream-function fiéld at Re-9.500, ¢ =4.01.

available analytical results for a large range of Reynolds
number. It is important to note that such accuracy has been
achieved without going for elaborate inner iterations as in
[2] or the Hermitian technique, as in [7, 8], Despite its
utter simplicity and one drawback (as discussed earlier), the
present scheme has produced results at least as good as the
other theoretical methods. To the best of our knowledge,
no other finite-difference scheme has been as extensively
compared with other methods, analytical, numerical, and
experimental for such a wide range of Reynolds number.
Since only one minicomputer (of 8 MB RAM and 25 MHz
speed) was available during this work, it has not been
possible to extend the present method to larger Reynolds
numbers. However, it seems unlikely that any problem
should occur in solving similar problems as long as the flow
remains laminar.

B. Comparison

In this part of the discussion, the conventional approach
will be termed as (C) and the proposed one as (P). In
Table Il the steady state values of drag coefficient as
obtained by the two schemes has been presented. From the
obtained results it seems that the accuracy of both the
schemes are comparable at steady state.

&40

drag —

TABLE II

Comparison between Schemes (C) and (P) for the Components
and the Total Coefficient of Drag

Cd}‘ Cd!' CD
Re (€ (P) (©) (P () (F)
5 21518 21540 1.8899 18912 40417 40452
200 12078 12131 0.8053  0.8058 20131 20189

time—

FIG. 8. Comparison of results obtained by schemes (C) and (P). The outer radius is 20.568 and the time steps are (a) 0.05; (b) 0.1:

For the following study of the unsteady behaviour of the
two approaches, the problem of flow past circular cylinder
at Re=100 has been considered. The grid has 175 % 120
nodes in the radial and circumferential directions, respec-
tively, with r, = 20.658, In Fig. 8a, the results have been
obtained using 4¢ =0.05. It can be seen that (P) behaves in
a superior manner as regards both stability and accuracy. In
Fig. 8b, 4r= 0.1, which is quite large. [t can be seen that the
results obtained using (C) become wildiy unrealistic within
a short time and do not seem to have any possibility of con-
verging to the correct solution. However, results using (P)
remain within bounds and seem to be converging to the
correct solution. Thus, the proposed scheme, which uses a
second-order accurate expression for evaluating the no-slip
wall vorticity is found to be more accurate and dynamically
far more stable than the conventional one which uses a first-
order accurate expression. This is contrary to the popularly
held belief [ 17] and confirms the superiority of the proposed
scheme.

It should be pointed out here that the oscillations
observed in Figs. 8a-b do not exist in reality. With a smaller
time step the oscillations vanish for both the schemes. But,
since the dynamic stability of the proposed scheme is
superior to the conventional one, it is possible to use larger
time steps for calculating an accurate unsteady evolution of
the flow.
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FIG. 9. Eifect of spatial discretization on evolution of €, with time, The outer radius is 6.58 and the time step is 0.05: O, 30 nodes; ®, 60 nodes;

AL 80 nodes; A, 120 nodes; A, 200 nodes; ¥, 300 nodes.

C. Dependence on Spatial Discretization and QOuter
Boundary

Table 11T presents the steady state values of drag coef-
ficients for Reynolds number 20 as obtained by using the
proposed scheme for various values of r,. The value of 4¢
has been kept constant at 0.02 for all the cases. It seems clear
that with the simple outer boundary conditions used, it is
necessary to keep the outer boundary at a “safe” distance
from the body. In this particular case, the “safe” distance
seems to be around 100 radius.

For the unsteady phase, the problem is once more that of
Re=100. The outer boundary in all these cases is at
r., = 6.58. The number of nodal points in the circumferen-
tial direction is 120. The number of nodal points in the
radial direction has been varied between 30 to 300. The
results shown in Figs.9a and b clearly indicate that
the dependence on the spatial resolution is critical only
at the early stages of the flow development. It has been
observed also that the residues at the grid points adjacent to
the no-slip boundary reduce as the grid is made finer. The
results thus show that the discussed “drawback”™ of the
proposed scheme does not really pose any serious threat to
its reliability and accuracy.

CONCLUSIONS

Satisfaction of the no-slip to an acceptable order of
accuracy has always been a cause of major concern while

TABLE III

Dependence on the Position of the Quter Boundary

Feo Cup Cur Cp
23.14 1.3018 0.8533 2.1552
43.37 1.2424 0.8215 2.0639
81.30 1.21%91 0.8090 2.0281
152.40 1.2131 0.7958 2.0189

using the vorticity-stream function formulation for solving
problems of incompressible viscous flows past stationary or
moving boundaries. In the present work, a fairly simple idea
has been proposed to satisfy the same to an accuracy of
second-order through the use of a new set of boundary
conditions while solving the Poisson and vorticity transport
equations.

The proposed method has been applied to solve the
problem of flow past non-rotating circular cylinders for a
wide range of Reynolds number (5 < Re < 10,000). The
results obtained have been compared extensively with
available theoretical (both analytical and numerical)} and
experimental results. The comparisons seem to be extremely
encouraging from both qualitative and quantitative points
of view. The proposed scheme has aiso been found to be able
to predict flow evolution of almost analytical accuracy in
the extremely critical starting phase of the flow which, to say
the least, is a fairly difficult task.

Comparisons with a conventional approach have made it
clear that the improvements, despite being “local,” lead to
remarkably better results. Thus, the proposed approach has
been found to be not only more accurate but also dynami-
cally far more stable, despite the use of a higher-order
accurate expression for evaluating the no-slip boundary
vorticity.

A study of the dependence of the proposed method on
spatial discretization has made 1t clear that the scheme,
despite its one “drawback,” is almost surprisingly inde-
pendent of the space discretization except at the very early
stage of the flow evolution. It has been observed, as usual,
that finer grids produce better results.

All the above facts can be attributed to the reason that in
the proposed approach the no-slip is satisfied explicitly to
an accuracy of second order while solving both the vorticity
transport and the Poisson equation. This has been made
possible through the use of the new boundary condition (7)
which can be said to be a numerical equivalent of Robbins
condition. A new expression (10) has also been developed
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for evaluating the no-slip vorticity and used for solving (3).
This expression is consistent with (7) and is second-order
accurate,

Thus, the present work may be considered as a modest
attempt to satisfy the no-slip in a better way within the
framework of vorticity-stream function formulation using
extremely simple finite-difference methods. Its success
simply hints at the immense importance of the no-slip. It
may not be wrong to conclude that algorithms which satisfy
no-slip to a higher order of accuracy are likely to be more
accurate and reliable.
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